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Abstraet--A three-dimensional conduction model has been developed to predict the transient temperature 
distribution inside a thick solid that is irradiated by a moving laser source, and the changing shape of a 
groove carved into it by evaporation of material. The laser may operate in CW or in pulsed mode with 
arbitrary temporal as well as spatial intensity distribution. The governing equations are solved using a 
finite difference method on an algebraically-generated boundary-fitted coordinate system. The accuracy of 
the present transient model was verified by comparison with previous three-dimensional codes that were 
limited to quasi-steady CW operation. Groove shapes and temperature distributions, as well as their 
transient development, for various machining conditions are presented, demonstrating the differences in 
the ablation process between CW, pulsed and Q-switched (or other pulses of extremely short duration) 

laser operation. 

1. INTRODUCTION 

Since their invention in 1960, lasers have found diverse 
applications in engineering and industry because of 
their ability to produce high-power beams. Laser 
applications include welding, drilling, cutting, scri- 
bing, machining, heat treatment, medical surgery, and 
others. 

One of the principle advantages of laser cutting is 
its ability to cut very hard materials easily. Ceramics 
are among the most difficult materials to machine 
by conventional machining techniques, since they are 
very hard and brittle. The cost of machining ceramics 
into complex shapes is often prohibitive if con- 
ventional machining is used. Lasers may provide a 
cheaper alternative to conventional machining and 
have found widespread use in industry. However, the 
physical phenomena involved in many laser appli- 
cations are not fully understood. A better quantitative 
understanding of the physical mechanisms governing 
these phenomena will diminish the need for extensive 
trial and error experiments, needed to use lasers for 
complex machining operations on newly developed 
materials. 

Modeling of laser drilling, cutting and scribing has 
been addressed by a number of investigators. Simple 
one-dimensional drilling models have been given by 
Dabby and Pack [1] and Wagner [2]. Other approxi- 
mate laser drilling models have been developed by 
Schurcker and Abel [3], Petring et al. [4], and others. 
Laser scribing, drilling and cutting of ablating and/or 
decomposing materials has been investigated pri- 
marily by Modest and coworkers. They developed a 
number of models [5-16], ranging from quasi-one- 

dimensional to fully three-dimensional (3D) models. 
The reader is referred to these papers for a complete 
description of their various aims and capabilities, as 
well as to a monograph by Chryssolouris [17] for a 
review of other pertinent theoretical work that has 
dealt with the different aspects of material removal 
with lasers. 

All theoretical models to date have dealt only with 
quasi-steady material removal by a CW (continuous 
wave) laser. In the present paper the 3D finite-differ- 
ence model on a boundary-fitted coordinate system of 
Roy and Modest [13] will be revamped and aug- 
mented to allow the treatment of transient effects, 
such as start-up and shut-down effects, as well as 
pulsed laser operation. Very short pulses, such as 100 
ns pulses from a Q-switched Nd-YAG laser, with long 
off-times as long as 1 ms (or a laser-on-time fraction 
of 10 -4 ) will be considered, as well as very long pulses, 
such as pulses of several ms duration from a CO2 laser 
with large laser-on-time fraction. 

2. THEORETICAL BACKGROUND 

In order to obtain a realistic yet feasible description 
of the evaporation front in a moving solid subjected to 
a concentrated laser beam, the following simplifying 
assumptions similar to Roy and Modest [13] will be 
made : 

(1) The solid moves with constant velocity u. 
(2) The solid is isotropic. 
(3) Density variations of the solid with temperature 

are negligible. 
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NOMENCLATURE 

( ,  

CI, Cz 
F 
Fo 

. /  

Ahrc ^ 
i , j ,k  
J 
k 
t i l "  
fi 

specific heat 
constants in Arrhenius relation 

irradiation flux vector 
radiation flux density at center of beam 
at focal plane 
functional variation of thermal 
diffusivity, - %~i~H,~ 
"heat of removal" 
unit vector in .v. v and z directions 
Jacobian of transformation 
thermal conductivity 
mass rate of ablation per unit area 
unit surface normal 

Nk, N *  c o n d u c t i o n - t o - l a s e r  p o w e r  

parameters 
Ne, N, n Nc number of grid points in ~, q and 

directions 
Q dimensionless irradiation flux vector at 

surface, = F/F,, 
.~(.?,p) local groove depth 
s (x , y )  dimensionless groove depth 
Ste, Ste* Stefan numbers (ablation energy- 

to-sensible heat parameters) 
[ time 
t dimensionless time 
T temperature 
u laser scanning speed 
U laser speed-to-diffusion speed 

parameter 

1" n 

It', I1' 0 

W 

• ¥, V, _- 

ablation velocity (of solid surface), 
= rh"/p 
l /e 2 radius of laser beam (at focal 

plane) 
dimensionless radius of laser beam, 

W/W 0 

Cartesian coordinates 
dimensionless Cartesian coordinates. 

Greek symbols 
~u thermal diffusivity 

local effective absorptivity at laser 
wavelength 

fl, far-field beam divergence 
)~ wavelength of laser radiation 
)-k conductivity correction factor 
p density of the medium 
(~ difference operator 
0 dimensionless temperature 
~, t 1, ~ dimensionless computational 

coordinates. 

Subscripts 
re evaluated at evaporation (or 

decomposition) temperature 
~, ~1, ~ derivative with respect to this variable 
0 at focal plane 
:'~ evaluated at ambient conditions, or 

located far away. 

(4) The material is opaque, i.e. the laser beam does 
not penetrate appreciably into the medium. This 
assumption may be somewhat questionable even for 
materials with large absorption coefficient, if the laser 
beam radius is very small (say, < 10/xm) and/or the 
pulse duration is very short (say, < 100 ns) resulting 
in very shallow heat-affected zones (a few/tin or less). 

(5) Change of phase from solid to vapor (or 
decomposition products) occurs in a single step with 
a rate governed by a simple Arrhenius relation. Real 
materials may display significantly different behavior 
as discussed by Roy and Modest [13]. Such effects are 
included by employing the total amount of energy 
required to remove material, referred to as "'heat of 
removal", Ahr,.. 

(6) The evaporated material does not interfere with 
the incoming laser beam and ionization of the gas 
does not occur, which is true for most cutting and 
drilling applications at moderate power levels. The 
gas is transparent and there are no droplets and par- 
ticles (or they are removed by an external gas jet). 

(7) Heat losses by convection and radiation are 
negligible as compared to the intensity of the incident 
beam (Modest and Abakians, [6]). 

(8) Multiple reflections of laser radiation within 
the groove are neglected. This is a limitation which 

restricts the present model to shallow grooves or 
materials with high absorptivities (even at grazing 
angles), e.g. if the evaporation surface is rough. Mul- 
tiple reflections of laser radiation within the groove 
have been addressed by Bang and Modest [14~16]. 

In previous work of the author the coordinate sys- 
tem has been affixed to the laser, i.e. the laser position 
remains stationary and the material moves relative to 
it with constant velocity u. For quasi-steady operation 
ofa CW laser machining process this results in a quasi- 
steady groove geometry (not a function of time in 
that coordinate system). Therefore, once determined, 
nodal points for the numerical scheme do not move 
with time. If simple transient effects, such as laser 
turn-on, are considered, nodal positions will change 
as the surface recedes until quasi-steady state is 
reached; this nodal movement, while undesirable 
from the view point of numerical stability, cannot 
be avoided no matter where the coordinate origin is 
placed. In the case of pulsed laser operation, shortly 
after the beginning of the pulse the surface recedes, 
similar to the turn-on effects of a CW laser. Once the 
laser pulse has ended ablation ceases almost instantly. 
However, if the origin is fixed to the laser, the nodes 
in the material keep moving (relative to the laser posi- 
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to  s.O_~ I 

t .4" ,,.,,., beo~ ~ w" Ollt 
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2w(z)-~ z, 

Fig. 1. Geometrical arrangement of laser and workpiece. 

tion) and must be constantly recalculated (resulting 
in accumulation of errors for the description of the 
surface). Therefore, to describe the operation of 
pulsed lasers it is advantageous to fix the coordinate 
system to the ablating material, letting the laser scan 
across the body. (However, the formation of a quasi- 
steady groove geometry is not possible with this coor- 
dinate system). Under these conditions the transient 
heat transfer equation for a large, thick solid 
irradiated by a Gaussian laser beam that moves with 
constant velocity u into the positive :~-direction (see 
Fig. 1) may be expressed in terms of temperature T as 

p c ~  = V "  (kVT)  (1) 

(where g? denotes a gradient with respect to dimen- 
sional ~, p, ~ coordinates) subject to the boundary 
conditions 

: 7 ~ + o o  .9--*+oo g ~ + o o :  T = T ~  (2) 

=~(R,y):  ~ F - f i = - f i ' ( k ~ T ) + v , p A h ~  (3) 

and an appropriate initial condition, such as 

? =  0: T0Z, y,z,0) = T,~ 

,~(x,)7, O) = 0. (4) 

Boundary condition (3) states that the irradiation 
absorbed at the top surface is used up by conduction 
losses into the solid and by evaporation, if present (if 
no evaporation takes place, i.e. during warm-up, cool- 
down and in regions too far away sideways from the 
laser beam, the surface recession velocity vanishes, i.e. 
v. = 0). 

The energy intensity distribution, F, for a focused 
Gaussian laser beam having a waist w0 at the focal 
plane zo is given by Kogelnik and Li [18], and for a 
laser moving with constant velocity u into the positive 

direction is 

^ 

Z 
where 

w2(~) -- wg +fl~(2--g0) 2 (6) 

defines the beam radius, w, away from focus and 

2 
fl~ = (7) 

7~W 0 

is the far-field beam divergence angle for the diffrac- 
tion-limited case of a Gaussian beam. Also 
F o = 2P/gw o is the flux at the center of a Gaussian 
beam at the focal plane, P is the total laser power and 
w 0 is the 1/eZ-radius of the focal spot containing 86.5 % 
of the beam's energy. If the laser beam is visualized 
as consisting of a bundle of rays into the direction 
~0z, y,2), perpendicular to the wave-front of propa- 
gation, then ~ can be related to the radius of the wave- 
front [19], ~c(z), as: 

( .~-ut)~+yj +1~ (8) 
~.k ~/~(z)_ ~2_y2 

¢~(z) = (Z -eo) [ l  + (Z_eo)2jw2/#~ -I. (91 

Results given in this paper are limited to the Oaussian 
laser described above to simplify their presentation; 
arbitrary spatial intensity profiles are readily incor- 
porated. 

Finally, ¢(t-) defines the temporal intensity vari- 
ation during a laser pulse period of duration 
ip = Tp.o, + tp.on- and is normalized such that 

_ ~(t-) d? = 1. (10) 

Therefore, for a CW laser q~ ~ 1. 
Boundary conditions (2)-(4) are sufficient to solve 

equation (1) for the temperature if the groove shape 
is already established (v, = 0) or if t,, is otherwise 
known. We will assume in this paper that the ablation 
and/or decomposition of the solid material is gov- 
erned by a simple reaction equation of the Arrhenius 
type, similar to the equilibrium evaporation rate equa- 
tion originally developed by Langmuir and given, e.g. 
in Wei and Ho [20]. With such a reaction equation 
the rate of mass loss per unit area is described by 

Ahr~ 
t i ' t " = p v n = p C ' , e  c2(I T r e T )  C2=~-~ee (11) 

where Tr~ is the equilibrium ablation (or 'removal') 
temperature, R is the gas constant of the ablated vapor 
and (7~ is a preexponential factor, which may depend 
on temperature. Clearly, if C2 >> 0, no ablation/ 
decomposition occurs as long as T < /'re. Once T 
gets close to T,~ the material rapidly recedes, using up 
a lot of laser energy, so that T can exceed T,o by only 
a very small amount. This formulation has the further 
advantage that (if decomposition energy data are not 
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available, as is the case for most relevant materials) 
choosing a large value for C2(-~100-500) forces 
single-temperature ablation at T ~ T,~. 

To non-dimensionalize the governing equations 
and boundary conditions the following non-dimen- 
sional variables and parameters are introduced (Roy 
and Modest [13]): 

A = . ? / W  o 1' = .V ' /w~ 2 : -=/Wo 

.a 1 

~7 k d T  

s = ,~/w, t = cqL~j./w~ O =  

~H,~c 0~H,t c F(, w. 

N *  = Nk),k S t e *  = S te /2k .  (12) 

Physically, Nk approximates the ratio of conduction 
losses, for a surface normal to irradiation, and the 
absorbed laser flux; S t e  is the Stefan number that 
compares ablation energy with sensible heat, ,2+ is a 
conductivity correction factor (to accomodate vari- 
able properties), U relates the laser scanning speed to 
that of thermal diffusion into the medium and V, 
represents a similar non-dimensional transient 
recession of the evaporating surface with respect to 
the laser. The functionfdescribes the variable thermal 
diffusivity. The factor v/2 that appeared in some of 
the dimensionless groups of Roy and Modest [13] has 
been omitted in order to be consistent with work ot  
other authors. Also, for convenience, the Kirchhoff 
transformation (Carslaw and Jaeger [21]) is used to 
non-dimensionalize temperature. The non-dimen- 
sional form of the governing equation then follows 
a s :  

1 ?0 
- -  = V 2 0  (13) 

.1 ~t 

where gradients are now with respect to dimensionless 
coordinates, and the boundary conditions become : 

x ~ + + _ o c  ~'--.++_,~_. : - - . + , ~ :  0 = 0  (14) 

: = s ( x , y ) :  

~Q" fi = - N*[fi" V 0 -  l / , ,Ste  *] 

(.,._ +.,,-" ] F ~blt) exp - 2  
Q F0 W 2 ~ J~.i~ 

m 2 ( z )  : I -4:-fl~ ( Z - - Z ( , )  2 (15) 

z = s ( x , y ) :  V., = C.  e ¢:tl ~;,.ru, I C~ = C~wo/~ . ,~ . .  

(16) 

Equation (13) with its boundary conditions (14) 

(16) lbrms a complete set of dimensionless equations 
in transient form for the solution of the groove shape 
s ( x ,  y ,  t) and temperature field O(x,  y ,  z,  t). This set of 
equations is similar to the one used previously (Roy 
and Modest [13]) except that the definitions of some 
dimensionless terms have been modified, a new 
ablation model is used (a more general Arrhenius 
reaction rate as opposed to fixed-temperature 
ablation), and transient effects are included. 

3. SOLUTION APPROACH 

The accuracy of a numerical finite difference solu- 
tion of the governing equation with its non-linear 
boundary conditions applied to a complex groove 
geometry is strongly affected by the choice of nodal 
placement as well as the coordinate system in which 
the equations are cast. The boundary-fitted coordinate 
system is useful to this problem in two ways: body- 
conlbrming grids simplify the application of boundary 
conditions since grid lines coincide with the boundary 
of the body ; secondly, curvilinear grids may be clus- 
tered in regions of rapid change to improve solution 
accuracy. 

3.1. C o o r d i n a t e  t r a n s J o r m a t i o n  

The physical domain, (x, v, z), will be transformed 
to a uniformly spaced rectangular coordinate region, 
(~, r/, ~). Symbolically, the functional relations are : 

x = x ( ~ ,  ~, ~, r) y = v(~, ~/, (, ~) 

= ¢(x,y,z , t )  q = ~ l ( x , y , z , t )  

~" = ¢ ' ( . v , y , z . t )  r = t. (17) 

The functional tbrm of the metric quantities 
(¢~ = i ~ / ~ x ,  4,  = t~ /Oy ,  ~: = ~ / g z ,  etc.), required to 
transform an equation from a physical coordinate 
system to computational coordinates has been given 
by several authors, e.g. Thompson et  al. [22], Ander- 
son et al. [23], and is repeated here for convenience : 

? (x ,  y ,  -) 
- l / J  = x e ( 3 ' ~ z  ~ --.r~%) 

[ ~, ¢, 

I ll, q~ q: 

+ N,~ (.V::~ - - Y S ¢ )  + XC (y~% --.V,~:~ ) (18) 

U ( y , q - y ~ z , )  

J ~ (y:z~ -y~z¢) 

L 

( z ,  x~ - z:x,, ) (x,,yc - .'qy,~) ] 
1 

( z ~ x ~ - : ~ x ~ )  ( x ~ v ~ - x v ~ ) |  
1 

( z c x , , - z , x D  (x~y,,-x,,vD J 

(19) 

q t  = - -  x ~  ~ - -  J ' ~ q ,  - -  z ~ q =  

¢, = - x Z ,  - y Z , - z Z = .  (20) 
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The mapping functions (17) need not be known 
analytically ; the partial derivatives xe, x,, x¢ are com- 
puted by central difference formulae, from which the 
metric quantities can be obtained. 

3.2, Transformed equations 
The governing equation is transformed to the rec- 

tangular computational coordinate region. The non- 
conservative form of the transformed equation is easily 
derived as given by Thompson et al. [22] : 

1 
.f[O, + ~,0~ + ~0~ + ~0~1 = n~o~ 

+VZ~O~+V2qO,+V2~O¢ (21) 

where 

A ';~ =V~'V~ A "~ =V~/'V~/ A ¢¢=V~'V~ 

A ~'~=V~'V~ A ¢~=V~'V~ A "~=V~'V~ 

V z ~ = - V ~ ' D  V 2 q = - V q ' D  V 2 ~ = - V ~ ' D  

D = D X i + D Y ] + D f f ,  

D" = A~x¢¢ + A""x,~ + A~¢x;; + A¢'~2x¢, 

+ A¢¢2x¢~ + A~¢2x,~¢ 

D ~' = A~y¢~ + A~y~, + A¢¢y¢¢ + A¢'~2),¢,~ 

D= = A~z¢¢ + A"~z,, + A¢~z¢~ + A~'2z~, 

+ A¢¢2z¢; + A~¢2z,¢. 

The irradiation boundary condition is also trans- 
formed to computational coordinates : 

Irradiated surface, ~ = 1 : 

~Q" V~ = -N~[A~¢O¢ + A~¢O~ + A¢¢0¢ + ~Ste*]. (22) 

The other transformed boundary conditions are : 

Far upstream, ~ = 1 : 0 = 0 (23) 

Far sideways, ~/= N, : 0 = 0 (24) 

Far downstream, ~ = N¢ : 

0~ = ~x0~+~/~0~+~0¢ = 0 (25) 

In the center plane, r /=  1 : 

0~. = ~r0¢ + ~/~,0, + ~.0~ = 0. (26) 

The evaporating condition becomes : 

Vo C~ 

(27) 

Equation (25) is used instead of a constant ambient 
temperature boundary condition, 0 = 0, since the grid 
is truncated at a finite distance downstream of the 
laser heating zone. However, the boundary surface, 

= N¢, is constructed far enough from the evap- 
orating groove surface such that 0 is very small. 

3.3. Grid generation 
A computational coordinate system was con- 

structed with N~ × N~ × Arc nodal points in the region 
bounded by the irradiated surface, (~ = 1) and an- 
other surface (~ = N:), 'far' away into the body not 
heated by the laser. As the laser moves across the 
surface different parts of the workpiece become heated 
by the laser beam. Thus, nodes are continuously added 
ahead of the laser beam and dropped in its rear. It is 
desirable to maintain uniform nodal spacing of 
A~ = Aq = A~ = 1 between the nodal points, which 
simplifies difference representation in computational 
space. The present study is limited to the case where 
the absorbed irradiation is symmetric about the center 
plane resulting in a symmetric groove. Therefore, the 
grid is constructed on one side of the center plane. In 
Fig. 2 the computational domain (~, q, ~), which is 
a rectangular parallelepiped is shown alongside the 
physical domain (x, y, z) bounded by curved surfaces. 

A number of considerations are important for the 
construction of the computational nodal system : 

(1) The nodes must be smoothly distributed across 
the physical domain ; nodes may not be spaced apart 
too much wherever substantial temperature gradients 
are expected. 

(2) The grid system needs to be self-adaptive, auto- 
matically deforming itself as the laser removes and 
shapes material. 

(3) Because of the rapid recession and deformation 
of the computational domain the nodal network needs 
to be recalculated during each time step; therefore, 
the nodal network construction must be very simple 
to allow rapid recalculation. 

These above considerations make the construction 
of a 3D grid system a formidable problem! Thank- 
fully, the problem is somewhat simplified by the fact 
that the heat-affected zone is usually only a thin sur- 
face layer, ranging in thickness from 1 to 2 laser radii 
for CW laser operation to as little as 0.1 radii and 
less for pulsed operation. Thus, the problem may be 
broken up into two parts : (i) generation of the nodal 
network on the top (irradiated surface) and (ii) cal- 
culation of internal nodes. Computational efficiency 
dictates that all grid generation needs to be done using 
simple algebraic interpolation functions. 

3.3.1. Surface nodes. The projection of the top sur- 
face of the computational zone is assumed to be rec- 
tangular. A simple hole drilled into the workpiece 
would produce a deep, circular indentation in a rec- 
tangular body. All 2D methods to produce a 'good' 
network on such a system as described by Thompson 
et al. [22] were tried and failed, since (a) they have 
difficulty accomodating a circular shape within a rec- 
tangular frame and (b) they have great difficulty plac- 
ing regular nodes on the sharp apex of a deep hole. 
O- and C-grids [24] would be expected to cope better 
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Fig. 2. Physical and computational grid systems. 

with the circular indentation : however, this approach 
would make it difficult to add and drop nodes as the 
laser scans across the surface (and, in future exten- 
sions of  the model, to accomodate overlapped grooves 
and other shaping operations). On the other hand, for 
the vast majority of  problems it is quite acceptable 
to use constant spacing in the x- and y-directions 
(Ax = const, Ay = const) : grid spacing tends to get 
large only on very steep surfaces ; these steep surfaces, 
however, tend to be almost isothermal (since ablation 
is taking place on their surface) without substantial 
conduction along them, or they are far away from 
the laser-interaction zone (i.e. they are unimportant).  
Exceptions to this rule are cases with strong internal 
reflections and/or  a strongly diverging laser beam 
focused inside the workpiece : in both cases the side- 
walls may become v'erv steep or even fold back (i.e. 
the width of  the groove inside the solid may be larger 
than near the surface). We will limit ourselves here to 
constant spacing in the x- and y-directions. 

3.3.2. I n t e r n a l  nodes .  Once the surface nodes have 
been established, the internal grid points for each sur- 
face node need to be generated. Lines of  (~ = const, 
~/= const) need to move smoothly from the surface 
(~ = 1) to a point "far' inside the material (~ = N~.); 
the various lines may not interfere with one another, 
indeed, they should stay as far apart as possible every- 
where to minimize numerical instability. Near  the sur- 
face (where the largest temperature gradients are) the 
lines need to be perpendicular to the surface (to min- 
imize truncation error [22]). Therefore, the internal 
nodal system is designed such that the local unit tan- 
gent to a (~ = const, q = const) line is given by (see 
Fig. 3) 

= c,.fi +p,.gl (28) 

where 

c,. = (1--v) 'k 

( - -1  
v -- N c -  1 " (29) 

Here g. is the desired gridline direction at the "far- 

1 
Fig. 3. Variation of the local unit tangent along a ~ = const, 

~/= const grid line. 

inside' point (v = 1); c, has been chosen such that 
= fi at the surface, and such that the morphing of  fi 

towards g~ can be controlled by ~c,,/~v(v = O) = - Ck. 

The value for p,. follows from cv if t is to be a unit 
vector. Finally, g~ is chosen to be a weighted average of  
surrounding surface normals and a forcing function, 
which bends Sl toward the z-direction, i.e. I~ (some- 
times helpful, if geometry is e x t r e m e l y  warped). 

Along the grid lines grid points need to be placed 
at proper intervals: (a) the grid points should be 
spaced such that temperature differences from point 
to point are roughly equal and (b) grid point distance 
should vary smoothly to minimize truncation error. 
Thus, many grid points need to be placed near the 
surface (with its strong temperature gradients), and 
the spacing needs to gradually open up for larger ~. 
Consequently, the following spacing scheme has been 
implemented 

v( l  + A v  2) 
Sk -- D (30) 

I + A  

where sk is the arc length along the gridline (3 = const, 
~/= const) from the surface (~ = 1) to point k (~ = k) 
and D is the total arc length thickness of  the heat- 
affected zone (input by the user). Equation (30) has a 
linear and a cubic component :  near the surface (~, v 
small) the spacing is almost linear, resulting in equally- 
spaced nodes (and low truncation error), fanning out 
rapidly for larger values of  ~. The value of  A deter- 
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mines how closely the nodes are spaced near the 
surface, and is chosen such that the temperature 
difference between the surface and the first inside node 
is roughly O~a,]/(N¢-I) (i.e. aiming for equal A0 
between all grid points) although, for numerical sta- 
bility, s2 is not allowed to become smaller than a 
specified minimum value (s2 >/S2,min)- Therefore, the 
grid spacing is automatically adjusted locally, placing 
many nodes near those parts of the surface where the 
heat-affected layer is thin, and spreading them out 
where the heat-affected layer is thicker. 

4. COMPUTATIONAL PROCEDURE 

The transformed equation (21) in 0 is finite-differ- 
enced and solved using a semi-implicit algorithm. In 
this scheme 0¢ and 0~ are finite-differenced implicitly 
(i.e. evaluated at time step z + Az) and the non-linear 
ablation condition (27) is also evaluated at r + Ar ; all 
other 0-derivatives are finite-differenced explicitly (i.e. 
evaluated at time z). The reasoning is as follows : the 
stability of an explicit scheme is governed by two 
factors. The first is the magnitude of Az/As 2 (where 
Az is the time step and As is the smallest distance 
between two nodes) ; the second is the nonlinearity of 
the ablation condition. Normal to the ablating surface 
(i.e. into the (-direction) the temperature drops very 
rapidly necessitating very small nodal steps in that 
direction (As as small as 10-4). Therefore, unless 
meaninglessly small time steps are considered, finite- 
differencing needs to be implicit in (. The cross-deriva- 
tive terms will always be small since, near the top 
surface, ( is orthogonal to ~ and q (making A ¢ : -  ~ 
A "~ - 0), and far away from the top 0 is small. Evalu- 
ation of the ablation condition also must be implicit : 
inspection of equation (27) shows it to be extremely 
sensitive to temperature near T = T~, rapidly shoot- 
ing from Vn--~ 0 to Vn >> I. Using this condition 
explicitly (i.e. extrapolating it) would require very 
small changes in temperature and, therefore, too small 
time steps. The situation is quite different for ~- and 
q-derivatives. In the planes ( = const nodal spacing is 
relatively large (As ~- 0.02~.2). [Note that this may 
lead to very large values of (As¢,,)m~/(As~)mi, ; to main- 
tain a stable finite difference scheme, values of 
(As~.~)m,J(Asc)mi,~ 1 should be avoided]. Typical 
non-dimensional times required to heat a solid with a 
laser from room temperature to the ablation point 
range from 10 -~ (CW) to 10 -6 (Q-switched pulse); 
choosing time steps of that magnitude or smaller 
would be typical. Therefore, violation of the stability 
condition for explicit calculations, Az/Asz< 0.5, 
appears very unlikely, and nothing would be gained 
from using an implicit scheme. Consequently, the 
second-order-accurate finite differences for first, 
second and mixed derivatives are represented as 

1 n 6¢(0)7,j,,,, = i(07,+,,j,k--0,-,,,,,,) (31) 

6¢¢(0)~, j ,k  = O ~ + l , / . k + O T _ ] , j , k - - 2 0 ~ j . k  (32) 

[~n O n --W~+,,j-Lk-- i - , j -Lk) ]  (33) 

n+ I l + l O n ÷  1 6~(O)~,j,k = l ( ~ j , k + l - -  ij, k-I) (34) 

etc. where i, j ,  k represent grid point indices and 6~, 
6~, 6~ represent finite differencing in 4, q, ( directions, 
respectively. 

At the boundary points where, at most, first-order 
partials must be represented, a second-order accurate 
one-sided difference was used to approximate 0 c. The 
second-order formula appropriate for the boundary 
point (i, j ,  l) on the surface ~ = 1 is : 

.~ (O'~n+l  1 n + l  n ÷ l  n ÷ I  = + 40ij.2 -- ). (35) 

Second-order differencing must be used at the groove 
boundary, ~ = 1, because the temperature change can 
be very high into the body over the nodes even though 
the nodes are placed closely. However, one-sided dif- 
ferencing of the coordinate values in the ~-direction, 
e.g. xc, need only be first-order accurate because the 
nodes are closely spaced. 

The governing equation is then represented in 
difference form as : 

1 FO ~+1 I ) 
- A  6~,:(0 ) ~ -  +~,6~(0 "+ ) ~ °+, 

+ ~ (0")W ~ + 6. (0")W ~ + A ~ 6~ (0 °) + A ~ . .  (0") 

+ 2A~6~ (0 ") + 2A~C3~: (0 ") + 2A"~6,: (On). (36) 

Similarly, the irradiated-surface condition becomes 

A~ 6:( O "÷ ~ ) = - ~ Q" V ~ -  A~ 6~( O ") 

-A"C~,(O È)-~tSte* (37) 

with (t evaluated from the ablation condition (27). In 
equations (36) and (37) the variable-property function 
f i s  determined implicitly at time step n +  1 (for stab- 
ility) while all metric coefficients are evaluated 
explicitly, at time step n. ~t depends on 0~,~ ~ through 
the ablation condition and is, thus, also implicit. 
Nodal movement is evaluated from equations (18)- 
(20). In the simplest case, chosen here, the x- and y- 
coordinates of  the top surface nodes remain fixed so 
that 

(zz)iv/,l = --~t/~z, (38) 

( ~ t ) i j ,  l = - -  Z z C z  = ~ z ~ t / ~ z  ( 3 9 )  

(/~t)i j ,  I = - - Z r ~ z  = q z ~ t / ~ z "  ( 4 0 )  

The ~t, ~/t and ~t for internal nodes (and their cor- 
responding new x-, y-, z-coordinates) are found from 
the grid generation scheme described in the previous 
section. 

Equations (36) and (37) give rise to tridiagonal 
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matrices for each ~, v/location. The algorithm, there- 
fore, requires a series of scalar, tridiagonal inversions 
and can be solved efficiently, although iterations are 
required because of the nonlinearity of equation (27). 

0 n + 1 In the iterative procedure the correct value ~or ~,/.t is 
obtained by first bracketing it : a negligible value for 
V., would require a minimum value for O','ii ~ , while 
assuming zero conduction losses in equation (22) 
yields a maximum value. The correct root is then 
found by Ridder's method [Numerical Recipes, [25], 
after slight modification necessitated by the strong 
nonlinearity of equation (27)]. Since only a single 
sweep over all ~, q locations (with a tridiagonal inver- 
sion for the ~-direction) is required for each time step, 
the method is roughly three times as efficient as the 
scheme of Roy and Modest [13] (but of similar accu- 
racy). 

5. NUMERICAL ACCURACY AND MODEL 
VALIDATION 

The numerical accuracy of the model was validated 
by comparing its results with those of Roy and Modest 
[13] for constant and variable property, quasi-steady 
test cases. Results for groove shape and depth were 
virtually identical, except that for small velocities 
(U = 2) small deviations (< 5% for predicted groove 
depths) were observed. Numerical experiments indi- 
cated that the solution is extremely sensitive to nodal 
spacing in the C-direction whenever conduction losses 
are substantial (small U). Roy and Modest's [13] code 
used equal ~-spacing for all 4, q-locations : since at the 
bottom of the groove the thermal penetration layer is 
extremely thin, their nodal spacing near the bottom 
surface was too far apart, resulting in underpredicted 
conduction losses and overpredicted groove depths. 
The present code automatically places nodes close 
together where the penetration layer is thin, and 
spaces them far apart where the layer is thicker. 
Numerical experiments also showed that, once a small 
enough value for Sz.mm has been identified, the results 
are of sufficient accuracy if ~ -~ 16-20 (i.e. further 
increases in N: change the groove shape by less than 
1%). 

Nodal movement into the ~-direction (lbr each time 
step) was of some concern : since nodal spacing near 
the surface is often so small, keeping nodal movement 
(due to the movement of the ablation front) below 

n +  I ~l = A ~ / A r  < 1 (i.e. the new location r~,~.~ does not 
move beyond the old subsurface location r'}j.2) would 
require very small timesteps. Numerical experiments 
showed that values as large as ]~d = 500 had no de- 
trimental effects (by comparing with results obtained 
with a Ar small enough to keep I~,[ < 1) ; this is appar- 
ently due to the fact that all ~-nodes move together, 
and the relative movement between them is small. 

Finally, decreasing the size of Ax and Ay showed 
that values of (As¢. , )mj(As¢)~,~ = 1000 and larger 
have no negative effects on the solution. 

6. SAMPLE RESULTS AND DISCUSSION 

The governing equation (13) and its auxiliary con- 
ditions (14)-(16) contain a large number of non- 
dimensional parameters ( U, Nk,  S te ,  zo, fl ~., tp and, for 
the ablation condition, C~, C2, T,.e) making exhaustive 
presentation of the various parameters' influence on 
laser machining on a few pages impossible. The situ- 
ation is aggravated by the fact that the temporal pulse 
variation, q~(t), will vary from laser to laser, and the 
dependence o f [  and ~ on temperature (and, in the 
latter case, on laser incidence direction) varies from 
material to material. Therefore, we will limit the dis- 
cussion here to a single 'typical' set of laser and 
material parameters, investigating turn-on and turn- 
off effects, and comparing the performance of CW, 
long-pulsed (10% laser-on fraction) and rapidly- 
pulsed (0.1% laser-on fraction) lasers, using step func- 
tion pulses. Variable property effects and the influence 
of pulse rise and decay effects will be discussed in 
a follow-up paper, which will deal exclusively with 
comparing the present model's results with exper- 
iment. Such comparisons have been made for quasi- 
steady CW operation on silicon nitride (Roy and 
Modest [13]), and a few CW experiments on graphite 
have been presented in a companion paper by Modest 
et al. [26], which deals with the extension of the present 
model to predict laser entry and exit effects, as well as 
the shapes of overlapping grooves. Very good quali- 
tative agreement between model and experiment was 
found. 

In all the following figures, most parameters were 
kept at fixed values ; viz., S te  = 2.5 (typical value for 
ceramics), z0 = 0 (laser focused on surface), fl~ = 0.02 
(average beam quality), U = 1 and Nk = 0.05 (equal 
scanning speed and total energy deposition per unit 
area): C~ = 10, C2 = I00 (assuring that ablation is 
limited to a very small temperature range around 
0 -~ 1,) ~ = 0.9 (highly absorbing material to avoid 
multiple-reflection effects in deep grooves), and 
/"= 2k = 1 (constant properties). For pulsed operation 
it was assumed that, at the beginning of the pulse, 
pulse power would jump instantaneously to a constant 
maximum power and would drop instantaneously 
back to zero power after an on-time of tp.on. 

For pulsed laser operation pulse periods of lp = 0 .5 ,  
0.75 and 1.0 were chosen : for a non-dimensional scan- 
ning speed of U =  1 this implies that the laser 
advances precisely lp beam radii between two pulses, 
allowing us to study pulse overlap effects on groove 
surface smoothness. For the rapidly pulsed laser the 
laser-on time was taken as 10-3tp: this scenario may 
be thought of as a Q-switched Nd-YAG laser pro- 
cessing a ceramic at a 10 kHz pulse rate, with an 
average power of ~ 30 W and a scanning velocity of 

10 cm s ~. For the normally-pulsed laser the laser- 
on time was taken as 0.1 tp : this may be thought of as 
a regularly pulsed Nd-YAG laser with a pulse rate of 
1 kHz (laser-on time 100/ts), a laser radius of 75/~m, 
scanning at 3 cm s-~ with an average power of 100 
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laser beam center  at tum-on at turn-off ( C W  and tp---0.5) 

0 / ,  ' ' ~ . ~ , " ;  ' ' ' ' . . . .  ' . . . .  / 7 ~ 7 ~ . ,  , 0 
p "~ \ / f f / , '  
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(a) (b) 

Fig. 4. Comparison of grooves generated with CW, pulsed and Q-switched lasers ; (a) cross-sections along 
centerline, (b) cross-sections normal to laser scan direction. 

W ;  or it could be a 250 W average power CO2 laser 
with a 200 #m beam radius, scanning at 2 cm s-  ~ while 
pulsing at a rate of 100 Hz (laser-on time of 1 ms). By 
the same token the CW case may be thought of as the 
same N d - Y A G  or CO2 laser running in CW mode. 
Note that, for otherwise equal conditions, the regu- 
larly-pulsed lasers have 10 times the CW power for 
the durat ion of the pulse, while the Q-switched laser 
packs 1000 times the CW power (during its 0.1% on- 
time). 

Figure 4(a) compares the groove depths along the 
centerline (y = 0) for different pulsing conditions. In 
all cases the laser is turned on when the laser center is 
at location x = 5, y = 0, and is turned off again after 
completion of the first pulse that carries the laser 
beyond x = 9, y = 0 (i.e. after nine pulses for tp = 0.5 ; 
six pulses for t o = 0.75 and five pulses for t o = 1.0). 
This implies that the tp = 0.5 and tp = 0.75 cases 
received an equal total amount  of energy (the equi- 
valent of nine tp = 0.5 pulses), while the tp = 1.0 case 
received a little more (five double pulses or 10 tp = 0.5 
equivalents), making its groove a little longer, and the 
CW case received a little less (the equivalent of eight 
tp = 0.5 pulses). For  the Q-switched laser forward 
movement of 0.5w0 and even 0.75w0 between pulses 
results in a smooth bot tom surface, while for a nor- 
mally-pulsed laser even at a forward movement  of 
0.5w 0 some wiggles appear. This is due to the fact that 
the Q-switched laser has a larger effective ablation 
area, as will be seen in later figures. Comparing Q- 
switched, regularly-pulsed and CW operation reveals 

that conduction losses are virtually negligible for Q- 
switched operation, small for a regularly-pulsed laser 
(resulting in a slightly less deep groove), and very 
substantial for the CW laser. This is also the reason 
that, at laser turn-on, the groove wall is much less 
steep for the CW laser than it is at laser turn-off (since 
much surrounding material must be preheated). One 
additional curve has been included for a Q-switched 
laser with tp = 0.5 and a higher scan velocity U = 1.5 
(also advancing 0.75w 0 between pulses). This line 
shows that no advantage is gained by minimizing pulse 
overlap : this scenario receives 2/3 the energy of  the 
t v = 0.5, U = 1 case resulting in ~2/3  of the material 
removal rate. 

Figure 4(b) shows cross-sections for the same 
grooves, each taken at their greatest depth. Similar to 
the centerline cut it is observed that the Q-switched 
laser makes the widest, steepest groove, and the CW 
laser the narrowest grooves. 

Typical temperature rise and fall profiles shortly 
after the beginning and the end of a laser pulse, respec- 
tively, are shown in Figs. 5-10. Figure 5 depicts how 
the material heats up at the beginning of a Q-switched 
laser pulse. After a single timestep of At = 10 -7 (cor- 
responding to = 20 ps) a substantial part of  the groove 
surface has reached ablation temperature, and after a 
time of only 5 × 10 -6 (-~ 1 ns) covers about  half of the 
eventual ablation zone as seen by comparing with the 
first frame of Fig. 7 [results from these figures should 
be taken as qualitative since (i) jumping from ambient 
to ablation temperature in a single time step is bound 
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Fig. 5. Surface temperature development lk)r small times alter start of new pulse from short-pulsed laser 
(rE,,,,, = 0.0005, r,, = 0.5). 
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Fig. 6. Internal temperature distributions at the end of a pulse from short-pulsed laser (Tp,o. = 0.0005, 
rp = 0.5) ; (a) cross-section transverse to laser movement, (b) cross-section along centerline. 

to be accompanied  by large errors and (ii) at time 
scales of  20 ps the use of  Fourier ' s  law of  heat  con- 
duct ion becomes questionable].  Note  tha t  the distance 
over which the surface tempera ture  drops  from 
abla t ion  tempera ture  to near -ambient  condi t ions  is 

very small (about  a quar te r  beam radius).  The heat- 
affected layer inside the mater ial  is also extremely thin 
dur ing the entire pulse, especially where abla t ion is 
taking place : the abla t ion  front  a lmost  catches up with 
the diffusion f ront  (Fig. 6) ; only along the b o t t o m  tail 
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Fig. 7. Surface temperature development for small times after end of a pulse from short-pulsed laser 
(%,o, = 0.0005, % = 0.5). 
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Fig. 8. Surface temperature development for small times after start of new pulse from normal-pulsed laser 
(%.o, = 0.05, % = 0.5). 
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Internal Temperature Distribution for Pulsed Operation 
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Fig. 9. Internal temperature distributions at the endpoint of a pulse from normal-pulsed laser (%,on = 0.05, 
% = 0.5) ; (a) cross-section transverse to laser movement, (b) cross-section along centerline, 

Fig. 10. Surface temperature development for small times after end of a pulse from normal-pulsed laser 
(%.°° = 0.05, % = 0.5). 

of  the groove [Fig. 6(b)] as well as along its rim [Fig. 
6(a)] does heat penetrate appreciably into the 
medium, but still less than 0.1 w0. Figure 7 demon- 
strates how rapidly the material cools off at the end 
of  a pulse, reaching near-ambient conditions at the 
bottom of  the groove after a few nanoseconds (again, 
this is qualitative since real pulses tend to decay over 
tens of  nanoseconds). The rim remains hot  for a con- 
siderably longer time: at the bot tom of  the groove 
heat can diffuse into cold material into almost all 

directions (concave surfaces), while at the rim heat 
from surrounding areas is diffusing into the same vol- 
ume (convex surface) [again, results should be seen as 
qualitative, also since real pulses have pulse decay 
times, and since hot gases not  considered in the model 
may convectively heat the surface]. 

Figures 8-10 show the corresponding behavior for 
the normally-pulsed case. The behavior is quali- 
tatively similar, but heat-up and cool down are several 
orders of  magnitude slower. The distance over which 



Three-dimensional transient model for laser machining 

Internal Temperature Distribution for CW Operation 
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Fig. 11. Internal temperature distributions resulting from a CW laser ; (a) cross-section transverse to laser 
movement, (b) cross-section along centerline. 

surface temperature drops is considerably larger 
{ -  0.5w0), and the thickness of  the heat-affected zone 
is one order of  magnitude higher. Again, this zone 
is much thinner wherever ablation occurs and, after 
turning the laser off, the concave bot tom cools much 
more rapidly than the convex rim. 

Internal temperature profiles during CW scribing, 
as well as cool-down isotherms after turning the laser 
off, look quite similar to the normally-pulsed case, 
Figs. 9 and 10. The equivalent internal temperatures 
are shown in Fig. 11, showing a heat-affected zone 
that is about  three times thicker ( ~  1.5w0). 

7. C O N C L U S I O N S  

A 3D, fully transient conduction model has been 
developed that is capable of  predicting the shape of  a 
developing hole or groove that is formed by ablation 
of  material, caused by a stationary or moving laser. 
The model  allows the treatment of  variable thermo- 
physical and radiative material properties, as well as 
laser intensities of  arbitrary spatial and temporal  
shape. Sample calculations were carried out to study 
the qualitative differences in material removal when 
CW, normally-pulsed (pulse length ~ 100 #s) and 
short-pulsed (pulse length ~100  ns) lasers are 
employed. The results show that during short-pulsed 
laser ablation conduction losses are essentially neg- 
ligible, resulting in substantially larger removal rates 
than for CW operation for otherwise identical con- 
ditions, and an extremely thin (small fraction of  a 
single beam radius) heat-affected layer. Ablat ion with 
normally pulsed lasers, on the other hand, results in 
removal rates, which approach those of  a Q-switched 
laser, but the thickness of  the heat-affected layer is 
much larger, approaching that of  the CW laser. The 

calculations further indicate that, during short-pulsed 
laser ablation, the material cools off rapidly after the 
end of  the pulse, returning to ambient conditions well 
before the beginning of  the subsequent pulse. 
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